Acute Effect of Resistance Training with and Without Blood Flow Restriction On Cardiovascular Variables and Blood Oxygen Saturation in Adults Men
DOI:
https://doi.org/10.37497/colloquium.v1i1.6Keywords:
Strength training, Vascular occlusion, Hemodynamic variables, Blood oxygenationAbstract
Resistance training (RT) with blood flow restriction (RT-BFR) has been proposed as an alternative method to high-intensity resistance training (HI-RT). Studies have been shown that neuromuscular adaptations between both RT-BFR and HI-RT are similar and higher than low-load resistance training (LL-RT). However, cardiovascular and blood oxygen saturation responses from both training models have been few investigated. Twenty-three resistance-trained men (29,1 ± 9,0 years; 79, ± 14,2 kg; 1,75 ± 0,1 m) underwent four RT protocols in unilateral elbow flexion and extension exercise as follow: 20% de 1 RM+40 of arterial occlusion pressure [AOP] (20/40), 20% de 1 RM+80 of AOP (20/80), 20% de 1 RM+120% of AOP (20/120%) and 70% de 1 RM (70/0). BFR protocols were performed with 3-4 sets of 15 repetitions, with BFR being kept during exercise and rest intervals between sets. 70/0 protocol was performed with the same number of sets, however, with 8-10 repetitions. 60s-interval was given in the BFR protocols, whereas 90s was obtained for 70/0 protocol. Sistolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), double product (DP) and blood oxygen saturation (SpO2) were measured pre and post-exercise. SBP and MAP were increased from pre to post-exercise in 20/120 and 70/0 conditions (p<0.05). DBP was increased only in 20/120 condition (p=0.000). DP was increased in 70/0 condition (p=0,03). There was no change in SpO2 in any conditions post-exercise (p>0.05). We conclude that the use of RT-BFR with supra-systolic blood flow restriction and HI-RT training induces greater cardiovascular stress without changes in the blood oxygen saturation levels.
Downloads
References
Bowtell, J. L., Cooke, K., Turner, R., Mileva, K. N., & Sumners, D. P. (2014). Acute physiological and performance responses to repeated sprints in varying degrees of hypoxia. Journal of science and medicine in sport, 17(4), 399–403. https://doi.org/10.1016/j.jsams.2013.05.016
Brandner, C. R., Kidgell, D. J., & Warmington, S. A. (2015). Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction. Scandinavian journal of medicine & science in sports, 25(6), 770–777. https://doi.org/10.1111/sms.12297
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Counts, B. R., Dankel, S. J., Barnett, B. E., Kim, D., Mouser, J. G., Allen, K. M., Thiebaud, R. S., Abe, T., Bemben, M. G., & Loenneke, J. P. (2016). Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle & nerve, 53(3), 438–445. https://doi.org/10.1002/mus.24756
Downs, M. E., Hackney, K. J., Martin, D., Caine, T. L., Cunningham, D., O'Connor, D. P., & Ploutz-Snyder, L. L. (2014). Acute vascular and cardiovascular responses to blood flow-restricted exercise. Medicine and science in sports and exercise, 46(8), 1489–1497. https://doi.org/10.1249/MSS.0000000000000253
Jessee, M. B., Dankel, S. J., Buckner, S. L., Mouser, J. G., Mattocks, K. T., & Loenneke, J. P. (2017). The Cardiovascular and Perceptual Response to Very Low Load Blood Flow Restricted Exercise. International journal of sports medicine, 38(8), 597–603. https://doi.org/10.1055/s-0043-109555
Laurentino, G. C., Ugrinowitsch, C., Roschel, H., Aoki, M. S., Soares, A. G., Neves, M., Jr, Aihara, A. Y., Fernandes, A., & Tricoli, V. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Medicine and science in sports and exercise, 44(3), 406–412. https://doi.org/10.1249/MSS.0b013e318233b4bc
Lauver, J. D., Cayot, T. E., Rotarius, T., & Scheuermann, B. W. (2017). The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect. European journal of applied physiology, 117(5), 1005–1015. https://doi.org/10.1007/s00421-017-3589-x
Leach, R. M., & Treacher, D. F. (1998). Oxygen transport-2. Tissue hypoxia. BMJ (Clinical research ed.), 317(7169), 1370–1373. https://doi.org/10.1136/bmj.317.7169.1370
Libardi, C. A., Catai, A. M., Miquelini, M., Borghi-Silva, A., Minatel, V., Alvarez, I. F., Milan-Mattos, J. C., Roschel, H., Tricoli, V., & Ugrinowitsch, C. (2017). Hemodynamic Responses to Blood Flow Restriction and Resistance Exercise to Muscular Failure. International journal of sports medicine, 38(2), 134–140. https://doi.org/10.1055/s-0042-115032
Loenneke, J. P., Fahs, C. A., Rossow, L. M., Thiebaud, R. S., Mattocks, K. T., Abe, T., & Bemben, M. G. (2013). Blood flow restriction pressure recommendations: a tale of two cuffs. Frontiers in physiology, 4, 249. https://doi.org/10.3389/fphys.2013.00249
Mattocks, K. T., Jessee, M. B., Mouser, J. G., Dankel, S. J., Buckner, S. L., Bell, Z. W., Owens, J. G., Abe, T., & Loenneke, J. P. (2018). The Application of Blood Flow Restriction: Lessons From the Laboratory. Current sports medicine reports, 17(4), 129–134. https://doi.org/10.1249/JSR.0000000000000473
Miller, R.M., Galletti BAR, Koziol K.J., Freitas E.D.S., Heishman A.D., Black C.D., Larson D.J., Bemben D.A., Bemben M.G. (2020). Perceptual responses: Clinical versus practical blood flow restriction resistance exercise. Physiol Behav. https://doi: 10.1016/j.physbeh.2020.113137. Epub 2020 Aug 14. PMID: 32798570.
Mouser, J. G., Dankel, S. J., Jessee, M. B., Mattocks, K. T., Buckner, S. L., Counts, B. R., & Loenneke, J. P. (2017). A tale of three cuffs: the hemodynamics of blood flow restriction. European journal of applied physiology, 117(7), 1493–1499. https://doi.org/10.1007/s00421-017-3644-7
Neto, G. R., Sousa, M. S., Costa e Silva, G. V., Gil, A. L., Salles, B. F., & Novaes, J. S. (2016). Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clinical physiology and functional imaging, 36(1), 53–59. https://doi.org/10.1111/cpf.12193
Picón, M. M., Chulvi, I. M., Cortell, J. T., Tortosa, J., Alkhadar, Y., Sanchís, J., & Laurentino, G. (2018). Acute Cardiovascular Responses after a Single Bout of Blood Flow Restriction Training. International journal of exercise science, 11(2), 20–31.
Reis, J. F., Fatela, P., Mendonca, G. V., Vaz, J. R., Valamatos, M. J., Infante, J., Mil-Homens, P., & Alves, F. B. (2019). Tissue Oxygenation in Response to Different Relative Levels of Blood-Flow Restricted Exercise. Frontiers in physiology, 10, 407. https://doi.org/10.3389/fphys.2019.00407
Rossow, L. M., Fahs, C. A., Loenneke, J. P., Thiebaud, R. S., Sherk, V. D., Abe, T., & Bemben, M. G. (2012). Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clinical physiology and functional imaging, 32(5), 331–337. https://doi.org/10.1111/j.1475-097X.2012.01131.x
Sardeli, A. V., do Carmo Santos, L., Ferreira, M., Gáspari, A. F., Rodrigues, B., Cavaglieri, C. R., & Chacon-Mikahil, M. (2017). Cardiovascular Responses to Different Resistance Exercise Protocols in Elderly. International journal of sports medicine, 38(12), 928–936. https://doi.org/10.1055/s-0043-115737
Scott, B. R., Slattery, K. M., Sculley, D. V., Hodson, J. A., & Dascombe, B. J. (2015). Physical performance during high-intensity resistance exercise in normoxic and hypoxic conditions. Journal of strength and conditioning research, 29(3), 807–815. https://doi.org/10.1519/JSC.0000000000000680
Takano, H., Morita, T., Iida, H., Asada, K., Kato, M., Uno, K., Hirose, K., Matsumoto, A., Takenaka, K., Hirata, Y., Eto, F., Nagai, R., Sato, Y., & Nakajima, T. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European journal of applied physiology, 95(1), 65–73. https://doi.org/10.1007/s00421-005-1389-1
Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of applied physiology (Bethesda, Md. : 1985), 88(6), 2097–2106. https://doi.org/10.1152/jappl.2000.88.6.2097
Vieira, P. J., Chiappa, G. R., Umpierre, D., Stein, R., & Ribeiro, J. P. (2013). Hemodynamic responses to resistance exercise with restricted blood flow in young and older men. Journal of strength and conditioning research, 27(8), 2288–2294. https://doi.org/10.1519/JSC.0b013e318278f21f
Yanagisawa, O., & Sanomura, M. (2017). Effects of low-load resistance exercise with blood flow restriction on high-energy phosphate metabolism and oxygenation level in skeletal muscle. Interventional medicine & applied science, 9(2), 67–75. https://doi.org/10.1556/1646.9.2017.2.16
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
O(s) autor declara(m) que o trabalho é original e inédito, não tendo sido submetido à publicação em qualquer meio de divulgação, especialmente em outro periódico, nacional ou internacional, quer seja em parte ou na íntegra;
Caso aprovada e selecionada, fica autorizada a publicação da produção na Revista, a qual não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
A publicação do artigo implica transferência gratuita dos direitos autorais à Revista, nas versões eletrônica e impressa, conforme permissivo constante do artigo 49 da Lei de Proteção de Direitos Autorais (Lei 9.610, de 19/02/98), e que a não observância desse compromisso submeterá o infrator a sanções e penas previstas no mesmo diploma legal;
Todos os artigos publicados são licenciados sob a Licença Creative Commons Attribution, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.